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Three-dimensional numerical simulation is presented on the motion of a deformable capsule undergoing
large deformation in a plane Poiseuille flow in a channel at small inertia. The capsule is modeled as a
liquid drop surrounded by an elastic membrane which follows neo-Hookean law. The numerical method-
ology is based on a mixed finite-difference/Fourier transform method for the flow solver and a front-
tracking method for the deformable interface. The methodology can address large deformation of a
capsule over a wide range of capsule-to-medium viscosity ratio. An extensive validation of the method-
ology is presented on capsule deformation in linear shear flow and compared with the boundary-ele-
ment/integral simulations. Motion of a capsule in wall-bounded parabolic flow is simulated over an
extended period of time to consider both transient and steady-state motion. Lateral migration of the cap-
sule towards the centerline of the channel is observed. Results are presented over a range of capillary
number, viscosity ratio, capsule-to-channel size ratio, and lateral location. After an initial transient phase
during which the capsule deforms very quickly, the flow of the capsule is observed to be a quasi-steady
process irrespective of capillary number ðCaÞ, capsule-to-channel size ratio ða=HÞ, and viscosity ratio ðkÞ.
Migration velocity and capsule deformation are observed to increase with increasing Ca and a=H, but
decrease with increasing k, and increasing distance from the wall. Numerical results on the capsule
migration are compared with the analytical results for liquid drops, and capsules with Hookean mem-
brane which are valid in the limit of small deformation. Unlike the prediction for liquid drops, capsules
are observed to migrate toward the centerline for 0:2 6 k 6 5 range considered here. The migration veloc-
ity is observed to depend linearly on ða=HÞ3, in agreement with the small-deformation theory, but non-
linearly on Ca and the distance from the wall, in violation of the theory. Using the present numerical
results and the analytical results, we present a correlation that can reasonably predict migration velocity
of a capsule for moderate values of a=H and Ca.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Capsules are liquid drops surrounded by thin elastic mem-
branes. Many biological cells, such as erythrocytes and leukocytes,
are often modeled as capsules (Pozrikidis, 2003, 2005; Marella and
Udaykumar, 2004). Artificial capsules are also abundant in indus-
trial applications related to food and polymer processing (Borhan
and Gupta, 2003; Gutcho et al., 1979).

Dynamics of capsules in shear flow has been studied for several
decades using analytical, numerical and experimental techniques.
When placed in a shear flow, a capsule deforms and aligns itself
with the flow, as does a liquid drop. However, unlike in a liquid
drop, properties of the membrane material play a critical role in
the dynamics of the capsule. Deformation of a capsule suspended
in a shear flow was measured by Chang and Olbright (1993).
Rehage et al. (2002) measured the deformation of a polyamide
membrane capsule in a linear shear flow and showed that defor-
ll rights reserved.
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mation increased linearly at low shear rates, but non-linearly at
higher shear rates. Deformation and shape instability of a capsule
with organosiloxane membrane were measured by Walter et al.
(2001). Recently, Risso et al. (2006) experimentally investigated
single-file motion of artificial capsules flowing through narrow
tubes.

The pioneering works of Barthes-Biesel and co-workers (Bar-
thes-Biesel, 1980; Barthes-Biesel and Rallison, 1981; Barthes-Bie-
sel and Sgaier, 1985) led to the development of the theory of
small deformation of a capsule suspended in a shear (or, a general
linear) flow. Li et al. (1988) computed axisymmetric large deforma-
tion of capsules in a straining flow, and Leyrat-Maurin and Barthes-
Biesel (1994) studied axisymmetric large deformation of a capsule
during its passage through a hyperbolic constriction. Queguiner
and Barthes-Biesel (1997) studied the axisymmetric motion of cap-
sules through cylindrical tubes. Pozrikidis (1995), and Ramanujan
and Pozrikidis (1998) used boundary integral simulation to con-
sider large deformation of capsules in shear flow. Pozrikidis
(2001), and Kwak and Pozrikidis (2001) have also studied the effect
of membrane bending resistance on the deformation of a capsule
suspended in shear flow and in axisymmetric straining flow. Effect
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of membrane viscosity on the dynamic response of a capsule was
studied by Diaz et al. (2000, 2001). Capsule deformation under var-
ious constitutive laws for the membrane material was studied by
Barthes-Biesel et al. (2002), and Lac et al. (2004). Using bicubic
B-splines for surface discretization in conjunction with bound-
ary-element method, Lac et al. (2004) showed that at higher mem-
brane stiffness (or, low shear rate), the capsule shape becomes
unstable for neo-Hookean membranes in absence of a bending
resistance. Effect of membrane pre-stress was studied by Lac and
Barthes-Biesel (2005). Barthes-Biesel and Chim (1981) studied
the rheology of a dilute suspension of capsules at small deforma-
tion. Breyiannis and Pozrikidis (2000) considered suspension of
two-dimensional capsules in shear flow. In a recent work, Lac
et al. (2007) numerically studied the interaction between a pair
of capsules in shear flow.

Capsules suspended in a liquid flowing through conduits are of-
ten encountered in many biological processes, and in biomedical
devices. Examples are the motion of blood cells through blood ves-
sels, flow chambers, and cell separation devices. In a wall-bounded
shear flow, the motion of a capsule (and liquid drop) is character-
ized by its migration lateral to the wall. Lateral migration of liquid
drops or capsules plays an important role during the flow of a sus-
pension of particles in which case a particle-free region is devel-
oped near the wall. Reduced local viscosity in the particle-free
region helps reducing the resistance to flow in small vessels, and
is critical for blood flow in microcirculation.

Lateral migration of liquid drops has been a subject of investi-
gation for many years. Here we briefly discuss a few studies on the
migration of liquid drops. In the limit of zero inertia, a liquid drop
moves laterally in a wall-bounded shear flow due to the asymme-
try introduced by the deformation of the particle by the imposed
shear. A liquid drop in a linear shear flow bounded by a single wall
continues to migrate away from the wall, whereas in a wall-
bounded parabolic flow, it settles at the centerline or in between
the centerline and a wall. Experimental studies on drop motion in
wall-bounded shear flow have been carried out by Karnis et al.,
1963, Goldsmith and Mason (1962), Karnis and Mason (1967),
Chan and Leal (1981), Hiller and Kowalewski (1987), and Smart
and Leighton (1991), among others. Early theoretical works on
drop migration in presence of wall in the limit of small deforma-
tion have been considered by Chaffey et al. (1967), Ho and Leal
(1974), and others (see, e.g. Chan and Leal, 1981, for a review).
Chaffey et al. (1967) predicted that the lateral velocity of a droplet
in a wall-bounded linear shear flow decreases inversely with the
square of the distance from the wall. Chan and Leal (1979) ex-
tended the small deformation analysis to drop migration in
wall-bounded Couette and plane parabolic flows. For a Newtonian
drop suspended in a parabolic flow of another Newtonian fluid,
their results showed that the drop migrates away from the wall
and settles at the centerline for drop-to-medium viscosity ratio
ðkÞ of less than unity. But for k � Oð1Þ, it settles at a position be-
tween the wall and the axis. Using the method of reflections, Sha-
pira and Haber (1988) obtained an approximate expression of the
deformation and drag force on a drop moving parallel to a wall in
a quiescent fluid bounded by two walls. The wall effects on the
drop deformation was shown to be greater for drops located close
to the walls, and to vanish for drops moving along the centerline.
Shapira and Haber (1990) extended the analysis to Couette flow in
presence of a wall. Uijttewaal et al. (1993) used boundary integral
method to study drop deformation and migration in linear shear
flow in presence of a wall, and observed large deviations from
the theory of Chan and Leal (1979), and Shapira and Haber
(1988, 1990) at small wall distances and large drop deformation.
Uijttewaal and Nijhof (1995) extended the boundary integral
method to consider viscosity ratios other than unity. Coulliette
and Pozrikidis (1998) studied transient motion of three-dimen-
sional liquid drops in cylindrical tubes at k ¼ 1:0 using boundary
integral simulation, and observed migration towards the tube cen-
ter. Li and Pozrikidis (2000) also considered wall-bounded shear
flow and plane Poiseuille channel flow of two-dimensional sus-
pensions of liquid drops. Recently, Griggs et al. (2007) formulated
an efficient three-dimensional boundary-integral method for mo-
tion of deformable drops between two parallel walls that can con-
sider a wide range of capillary number, drop-to-channel size ratio,
and drop-to-medium viscosity ratio.

In the case of a finite Reynolds number liquid drop, the effect of
inertia and drop deformation both contribute to lateral migration.
Mortazavi and Tryggvason (2000) showed that in presence of high
inertia, an isolated liquid drop undergoes a transient oscillatory
motion about its equilibrium position, and a steady-state may
not be achieved at sufficiently high Reynolds number.

In the limit of a rigid spherical particle, lateral migration is pos-
sible only in presence of inertia, and an extensive literature exists
on this subject. Here we avoid the discussion on the subject, and
refer to a recent article by Magnaudet et al. (2003) which provides
an excellent review of the topic.

Unlike liquid drops, capsule migration in wall-bounded shear
flow is relatively less studied. Experiments performed by Gold-
smith (1971) using dilute suspensions of red blood cells showed
center-ward migration, similar to the case of liquid drops. Extend-
ing the theory of small deformation, Helmy and Barthes-Biesel
(1982) studied the migration of a capsule in an unbounded para-
bolic flow, and showed that similar to a liquid drop, an isolated
capsule migrates laterally toward the centerline due to its defor-
mation under external shear. Pozrikidis (2005) presented bound-
ary-element simulation of spherical, oblate ellipsoidal and
biconcave capsules in tube flow, and observed that spherical cap-
sules slowly migrate towards the tube centerline, and oblate and
biconcave capsules developed parachute and slipper-like shapes,
respectively.

In this article we present a numerical method for large deforma-
tion of three-dimensional capsules which is based on a mixed fi-
nite-difference/Fourier transform method for the flow solver and
a front-tracking method for deformable interfaces. Capsules are
modeled as liquid drops surrounded by elastic membranes which
follow neo-Hookean law. Extensive validation of the methodology
is presented on capsule deformation in linear shear flow and com-
pared with the boundary integral simulation of Lac et al. (2004),
and Ramanujan and Pozrikidis (1998). Capsule migration in wall
bounded parabolic flow is simulated over an extended period of
time to consider both transient and steady-state migration. The
capsules are released off the channel centerline, and hence the
problem is essentially non-axisymmetric. Results are presented
over a range of capillary number, viscosity ratio, capsule to channel
size ratio, and lateral location.
2. Flow configuration and simulation technique

2.1. Problem setup

The flow configuration is described in Fig. 1. We consider the
motion of an array of capsules in a channel bounded by two infinite
flat plates placed parallel to the X-axis in the XYZ coordinate sys-
tem as shown. The height of the channel is H. The separation be-
tween adjacent capsules in the X direction is denoted by Lx0 and
in the Z direction by Lz0. The fluids, inside and outside of the cap-
sules, are incompressible and Newtonian. The fluids have same
density but may differ in viscosity. Viscosity of the liquid interior
of the capsule is denoted by lc, while that of the external liquid
is l0. In absence of the capsules, the undisturbed flow u0 is a
fully-developed parabolic (Poiseuille) flow, and is directed from
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X ¼ �1 to X ¼ þ1, and is driven by a constant pressure gradient
dP=dX as

u0 ¼
1

2l0
� dP

dX

� �
ðHY � Y2Þ; 0; 0

� �
: ð1Þ

Here Z is the direction of vorticity of the undisturbed flow. The cap-
sules are released in this flow at time t ¼ 0 off the center of the
channel. The initial location of the capsule centroid is denoted by
Xc0;Yc0; Zc0, which are varied in the simulations as described later.

2.2. Boundary conditions

At the top and bottom walls (Fig. 1), no-slip conditions are im-
posed as

u ¼ ½0;0;0�; at Y ¼ 0 and H: ð2Þ

Since the channel and the capsule array are infinitely long in the X
and Z directions, one can use periodicity condition in these direc-
tions to reduce the size of the computational domain. The computa-
tional domain is shown in Fig. 1 by dashed lines. The streamwise
length of the domain is Hx and the length in the Z direction is Hz.
As discussed later, the condition of periodicity not only reduces
the size of the domain, but also allows us to use Fourier transform
for fast computation.

2.3. Fluid–structure interaction

The simulation technique considered here is the front-tracking/
immersed boundary method (Peskin et al., 1977; Unverdi and Try-
ggvason, 1992; Tryggvason et al., 2001) for multiple fluids with dif-
ferent properties. The main idea of the front-tracking method is to
use a single set of equations for both the fluids, inside and outside
of the capsule. The fluid equations are solved on a fixed Eulerian
grid, and the interface is tracked in a Lagrangian manner by a set
of marker points (Fig. 2). The interface is accounted for by intro-
ducing a body force Fðx; tÞ in the governing equations such that
it is zero everywhere in the flow except at the interface:
Fðx; tÞ ¼
Z

oS
fðx0; tÞdðx� x0Þdx0; ð3Þ

where x is the location of an arbitrary point in the flow domain, x0 is
any point on the interface, oS is the entire interface, and d is the
three-dimensional Delta function which vanishes everywhere ex-
cept at the interface. Here f is the elastic force generated in the
membrane due to deformation of the capsule. For incompressible
fluids of different viscosity, the governing equations are:

r � u ¼ 0; and q
ou
ot
þ u � ru

� �
¼ �rpþr � sþ F: ð4Þ

Here uðx; tÞ is the fluid velocity, q is the density, p pressure, and

s ¼ lðruþ ðruÞTÞ ð5Þ

is the viscous stress tensor. Here lðx; tÞ is the viscosity in the entire
fluid: within a capsule, l ¼ lc, and for any point outside, l ¼ l0. As
the capsules move and deform, lðx; tÞ needs to be updated. Follow-
ing Tryggvason et al. (2001), this is done by solving a Poisson equa-
tion for an indicator function IðxÞ such that



Fig. 3. (a) Lagrangian elements on the capsule surface. (b) Deformation of a planar
triangular element in space, and comparison of the deformed and undeformed el-
ement in a common plane.
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lðxÞ ¼ l0 þ ðlc � l0ÞIðxÞ: ð6Þ

The d function used in (3) is constructed by multiplying three 1D d
functions as

dðx� x0Þ ¼ dðx� x0Þdðy� y0Þdðz� z0Þ: ð7Þ

For numerical implementation, a smooth representation of the d-
function is used as

Dðx� x0Þ ¼ 1
64D3

Y3

i¼1

1þ cos
p

2D
ðxi � x0iÞ

� �

for jxi � x0ij 6 2D; i ¼ 1;2;3;
Dðx� x0Þ ¼ 0 otherwise; ð8Þ

where D is the Eulerian grid size (Unverdi and Tryggvason, 1992). As
a result, the membrane force and viscosity vary smoothly over four
Eulerian grid points surrounding the interface. In discrete form, the
integral in (3) can be written as

FðxjÞ ¼ RiDðxj � x0iÞfðx0iÞ; ð9Þ

where i and j represent Lagrangian and Eulerian points, respectively.

2.4. Numerical treatment of membrane deformation

The capsule membrane follows the neo-Hookean law for which
the strain energy function is given by

W ¼ Eh
6
ð�2

1 þ �2
2 þ ��2

1 ��2
2 � 3Þ; ð10Þ

where �1 and �2 are the principal strains, E is the elastic modulus,
and h is the membrane thickness. The above equation describes a
thin sheet of three-dimensional material with an elastic modulus
of E, or equivalently, a two-dimensional membrane with a two-
dimensional elastic modulus equal to Eh. We assume that the bend-
ing resistance of the membrane is negligible.

The deformation of the membrane is treated using a finite ele-
ment model developed by Charrier et al. (1989), and Shrivastava
and Tang (1993), and later implemented by Eggleton and Popel
(1998) within the framework of immersed boundary method to
consider large deformation of capsules. First, the membrane is dis-
cretized using flat triangular elements (Fig. 3a). A Lagrangian node
on the surface is surrounded by five or six triangular elements. It is
assumed that the elements remain flat even after large deforma-
tion of the capsule. In the model, the forces acting on the three ver-
tices of a triangular element are obtained by computing the
displacements of the vertices of the deformed element with re-
spect to the undeformed element. For this purpose, the unde-
formed and deformed surface elements are transformed to a
common plane P using rigid-body rotations (Fig. 3b). By denoting
the three vertices of a triangular element as l;m, and n (see
Fig. 3b), and the undeformed and deformed coordinates of the ele-
ment as x and X, respectively, the transformation rules used for
coordinate rotation are

xP
l ¼ 0; xP

m ¼Mðxm � xlÞ; xP
n ¼Mðxn � xlÞ; and ð11Þ

XP
l ¼ 0; XP

m ¼ RðXm � XlÞ; XP
n ¼ RðXn � XlÞ; ð12Þ

where xP
l , XP

l , etc. are the coordinates of the vertices of the unde-
formed and deformed elements on the common plane P; M and R
are the transformation matrices defined as Mij ¼ eu

i e0
j and Rij ¼

ed
i e0

j , where e0; eu, and ed are the unit vectors attached to a fixed ref-
erence frame, to the undeformed element, and to the deformed ele-
ment, respectively (Fig. 3b). Once the deformed and undeformed
elements are transformed to the common plane P, the problem is
reduced to a 2D (planar) deformation on fxP ; yPg, where xP ; yP de-
note a local coordinate system attached to the plane P. The displace-
ments of the three vertices can be obtained which do not include
the contribution from a rigid-body rotation. Using the principle of
virtual work, the forces in the common plane P are then obtained as

fP
l ¼

oW
o�1

o�1

ovl
þ oW

o�2

o�2

ovl
ð13Þ

for the vertex l, and similarly for vertices m and n. Here v is the dis-
placement of a vertex, and �1 and �2 are the principal values of the
in-plane stretch ratios. The force fP lies in plane P.

We now assume that the displacement v varies linearly inside
the element so that

v ¼ Nlvl þ Nmvm þ Nnvn: ð14Þ

and the shape functions Nl;Nm and Nn are expressed as

Nl ¼ alxP þ blyP þ cl ð15Þ

for the vertex l, and similarly for vertices m and n. The coefficients
al, etc. are found by letting Nl ¼ 1 at vertex l, and Nl ¼ 0 at vertices
m and n, and so on. Once the shape functions are known, the dis-
placement gradients within the element, such as ov=oxP , and
ov=oyP , can be found by differentiating (14).

At this point we need to express the in-plane stretch ratios �1

and �2 in terms of the gradients ov=oxP etc, in order to evaluate
the derivatives in (13). For a planar deformation, �1 and �2 can be
related to the deformation gradient tensor D as

�2
1 ¼

1
2

G11 þ G22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðG11 � G22Þ2 þ 4G2

12g
q� �

; ð16Þ

�2
2 ¼

1
2

G11 þ G22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðG11 � G22Þ2 þ 4G2

12g
q� �

; ð17Þ

where G ¼ DTD is a symmetric positive definite matrix. Using the
expressions for ov=oxP , and ov=oyP , the components of G can be
written explicitly in terms of the shape functions N and the nodal
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Table 1
Validation: comparison of steady state deformation D with Ramanujan and Pozrikidis
(1998) (RP), Lac et al. (2004) (L1), Li and Sarkar (2008) (LS) and small deformation
theory (SD) of Barthes-Biesel and Rallison (1981)

Ca Present RP L1 SD LS

0.0125 0.083 0.08
0.025 0.162 0.16 0.15 0.16
0.05 0.278 0.27 0.27 0.32
0.1 0.392 0.39 0.40 0.63 0.37
0.15 0.460 0.47
0.2 0.496 0.5 0.52 0.49

In order to obtain the data from RP and L1, their curves were first scanned and then
uploaded in Tecplot. L1’s data at Ca ¼ 0:0125 was not clearly visible and hence not
reported.
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displacement v. The derivatives in (13), such as o�1=ov, can then be
written explicitly, and hence fP can be evaluated at each of the ver-
tices of an element. Once the in-plane forces for individual element
are found, they need to be transformed to the global coordinates.
This is done by using the transformation rule f ¼ RTfP , where R is
the transformation matrix as explained above. The resultant force
fðx0; tÞ at any node is obtained by vector resultant of the forces con-
tributed by all the elements which share that node.

2.5. Interface tracking

The capsule membrane is tracked in a Lagrangian manner. The
velocity of the interface is computed at each time step, after solv-
ing the Navier–Stokes equations, as

uðx0Þ ¼
Z

S
uðxÞdðx� x0Þdx; ð18Þ

where S indicates the entire flow domain. Though the summation is
over all Eulerian nodes, only the ‘local’ nodes contribute to the mem-
brane velocity. The discrete form of the delta function used here is
the same given by (8). In this way, a weighted interpolation of the
Eulerian fluid velocity is performed which ensures that the continu-
ity of velocity across the membrane is satisfied. The Lagrangian
points on the membrane are then advected as
dx0

dt
¼ uðx0Þ: ð19Þ

Numerically, above equation is treated explicitly using the second-
order Adams–Bashforth scheme as

x0nþ1 ¼ x0n þ Dt
3
2

uðx0nÞ �
1
2

uðx0n�1Þ
� �

; ð20Þ

where n;nþ 1, etc. are the time instances.



Table 2
Validation: comparison of capsule orientation h=p at steady state with Ramanujan and
Pozrikidis (1998) (RP), and Lac et al. (2004) (L1)

Ca Present RP L1

0.0125 0.215
0.025 0.201 0.2
0.05 0.168 0.17 0.17
0.1 0.136 0.14 0.14
0.15 0.121 0.12
0.2 0.107 0.11 0.10

RP’s data at Ca ¼ 0:025 is not included since h did not reach a steady value in their
simulation.

Table 3
Validation: comparison of tank–treading period _cT , with Ramanujan and Pozrikidis
(1998) (RP), and Lac et al. (2004) (L1)

Ca Presenta Presentb RP L1

0.025 14.1 13.4 13.4 13.0
0.05 16.2 15.0 14.6 14.9
0.1 19.0 17.8 16.6 17.8
0.15 20.9 20.0 19.6
0.2 22.2 21.3 19.7 22.1

a TTP is computed following a revolution of a marker point. b TTP is computed by
integrating dl=jvj over the membrane circumference in the (x, y)-plane, as done in
L1, where dl is a line segment of the capsule profile, and v is the membrane velocity.
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2.6. Dimensionless parameters

The centerline velocity of the undisturbed parabolic flow is Ucl.
The undeformed shape of the capsule is spherical. The diameter of
the capsule is denoted by a. The governing equations are made
dimensionless using H as the characteristic length scale, Ucl as
the velocity scale, and H=Ucl as the time scale. The dimensionless
time is denoted by t�. The major dimensionless parameters are:
the capillary number Ca ¼ l0Ucl=Eh which is the ratio of the vis-
cous force to the elastic force of the capsule membrane, the ratio
of the viscosity of the interior fluid to that of the exterior fluid
k ¼ lc=l0, and the size ratio a=H. The Reynolds number of the cap-
sules, defined as Re ¼ qUcla=l0, is 0.01, and hence the effect of iner-
tia is negligible. Other geometric parameters are the initial
separation distance between the capsules, Lx0=H, and Lz0=H, in
the x and z directions, respectively.

2.7. Flow solver

The governing equations are discretized spatially using a sec-
ond-order finite difference scheme, and temporally using a two-
step time-split scheme. In this method the momentum equation
is split into an advection–diffusion equation and a Poisson equation
for the pressure. The nonlinear term in the advection–diffusion
equation is treated explicitly using a second-order Adams–Bash-
forth scheme, and the viscous terms are treated implicitly using
the Crank–Nicholson scheme. The advection–diffusion equation is
solved using an ADI (alternating direction implicit) scheme. The
velocity is not divergence-free at the end of the advection–diffusion
step. The Poisson equation is then solved to obtain pressure at the
next time level. Using the new pressure, the velocity is corrected
to make it divergence-free. In order to reduce computation, the
Poisson equation is Fourier transformed in the x-direction yielding
a set of 2D decoupled PDEs which is directly inverted to obtain pres-
sure. Note that since the z-direction is periodic, the Poisson equa-
tion can be further reduced to 1D equations. In the code we have
not implemented this as the 2D Poisson solver takes less computa-
tion time than the advection–diffusion step.

2.8. Numerical resolution

Typical Eulerian resolution used in this study is 120� 120�
120, and Lagrangian resolution used is 1280 triangular elements.
In some cases, e.g. for capsules with high Ca and for an array of clo-
N_E
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D
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Fig. 6. Resolution tests at Ca ¼ 0:2 showing the steady values of D. (a) Effects of varying
triangular elements on the capsule surface. (b) Effects of varying timestep size ðDtÞ $, a
sely-spaced capsules, we use 5120 triangular elements, and
160� 160� 160 Eulerian points. Dimensionless timestep used in
the simulation is 10�4.

3. Validation

3.1. Capsule deformation in linear shear flow

Before we present validation of our methodology, it should be
mentioned that Eggleton and Popel (1998) previously used a similar
IBM technique and the same numerical treatment for membrane
deformation as described above to address large deformation of
capsules in linear shear flow. Eggleton and Popel (1998) validated
the methodology against the analytical results for small deforma-
tion of capsules obtained by Barthes-Biesel and Rallison (1981).

Before we present validation of our methodology, it should be
mentioned that Eggleton and Popel (1998) previously used a similar
timestep size
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Fig. 7. Principal stress distribution for Ca ¼ 0:025. Compressive (negative) stress
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IBM technique and the same numerical treatment for membrane
deformation as described above to address large deformation of
capsules in linear shear flow. Eggleton and Popel (1998) validated
the methodology against the analytical results for small deforma-
tion of capsules obtained by Barthes-Biesel and Rallison (1981).

We now present a series of validation of our present code. For
this purpose, we consider deformation of an initially spherical cap-
sule subject to a linear shear flow as

u0 ¼ ½ _cðY � H=2Þ;0;0�; ð21Þ

where _c is the shear rate. The flow is bounded in the Y direction by
two parallel walls which are placed H distance apart. The Z direc-
tion is the direction of vorticity. The no-slip condition is imposed
at the top and bottom walls as

u ¼ u0ðY ¼ 0;HÞ: ð22Þ

Periodic conditions are imposed at the other boundaries of the do-
main as discussed in previous section. The computational domain
for this problem is a cube with each side having length H. The cap-
sule is placed at the middle ðXc0 ¼ H=2;Yc0 ¼ H=2; Zc0 ¼ H=2Þ of the
computational domain. The capillary number for the shear flow
problem is defined as Ca ¼ _cal0=2Eh.

Consider first k ¼ 1 case. The initially spherical capsule deforms
in a shear flow and attains an ellipsoidal shape. The steady-state
shape of the deformed capsule is shown in Fig. 4a as a function
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of Ca. Capsule deformation increases, and it aligns more towards
the X-axis with increasing Ca. This qualitative trend agrees with
previous numerical results of Ramanujan and Pozrikidis (1998)
(henceforth called RP) and Lac et al. (2004) (henceforth called
L1). The flow field inside and around a deformed capsule is shown
in Fig. 4b. The rotational motion of the fluid can be seen in the
figure.

Quantitative comparisons with the results of RP and L1 are con-
sidered next. We consider time history of the deformation param-
eter, D ¼ ðL� BÞ=ðLþ BÞ where L and B are the major and minor
axis of the ellipsoid in the plane of the shear. Our results are com-
pared with those of RP in Fig. 5a and of L1 in Fig. 5b. In Table 1, we
list the numerical values of the steady-state deformation D ob-
tained from our simulations, from RP, from L1, and also from small
deformation analysis of Barthes-Biesel and Rallison (1981). We
also compare our results with those of Li and Sarkar (2008) for
Ca ¼ 0:1 and 0:2, who used a similar but independently-developed
front-tracking code to simulate capsule deformation. At low Ca, our
results agree well with those predicted by the small deformation
analysis. It should be noted that RP’s results correspond to a
zero-thickness shell, rather than a neo-Hookean membrane. RP
mentioned that the resulting deformation is 4% less than the one
that would be obtained with a neo-Hookean membrane. For
Ca 6 0:1, our front-tracking method predicts slightly higher values
of D compared to those obtained by RP. For Ca ¼ 0:025;0:05, and
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Fig. 11. Migration of a capsule in a pressure-driven flow in a channel. Sequence of cap
(bottom three rows). Here t� ¼ tUcl=H. X, Y, Z coordinates are scaled by channel height H.
and a=H ¼ 0:16.
0.1, we predict 1.25%, 2.96%, and 0.5% higher values of D, respec-
tively. For Ca ¼ 0:2, we predict slightly lower (0.8%) value of D as
compared to that of RP. In comparison to Lac et al., we predict
higher values of D for Ca < 0:1; our prediction is 8%, and 2.96%
higher for Ca ¼ 0:025, and 0.05, respectively. In contrast, for
Ca P 0:1, we predict lower values of D compared to those of Lac
et al; our predicted values are 2%, 2.12%, and 4.6% less for
Ca ¼ 0:1;0:15, and 0.2, respectively.

It is somewhat surprising that at higher Ca, we predicted less
(though very small) D compared to that of RP. Before discussing
the origin of these differences, we compare our results with those
of Li and Sarkar (2008). Interestingly (and surprisingly), Li and Sar-
kar, similar to us, predicted lower deformation than those pre-
dicted by RP and Lac et al. Compared to the results obtained by
Li and Sarkar, our results are closer to those of Lac et al., Li and Sar-
kar predicted 7.5%, and 5.8% less values of D compared to those
predicted by Lac et al., for Ca ¼ 0:1 and 0:2, respectively.

Extensive tests at Ca ¼ 0:2 are done by varying Eulerian resolu-
tion ðNEÞ, Lagrangian resolution ðNLÞ, timestep size ðDtÞ, and the
size of the computational domain ðHxÞ. The steady-state value of
D with respect to these variables are shown in Fig. 6. In Fig. 6a,
the effect of varying Eulerian resolution is shown. Capsule defor-
mation increases with increasing Eulerian resolution, but reaches
a converged solution for Eulerian resolution above 1203. When
the Eulerian resolution is changed from 403 to 803;D increases
.08 t*=0.12 t*=0.16 t*=0.32

*=0.64 t*=0.96 t*=1.28

t*=5.3

t*=13.5

t*=8.1

t*=2.9 t*=3.7t*=3.3

sule shapes during initial transience is shown for Ca ¼ 0:2 (top row) and Ca ¼ 0:8
Y=H ¼ 0 is bottom wall of the channel, and Y=H ¼ 0:5 is channel center. Here k ¼ 1,
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by 3.1%, but when the resolution is increased from 1203 to 1603;D
increases by only 0.2%. Most of our simulations are done at 1203

and some at 1603. The effect of Lagrangian resolution (in terms
of the number of triangular elements on the capsule surface de-
noted by NLÞ is also shown in Fig. 6a by keeping the Eulerian reso-
lution fixed at 1203. Deformation decreases with increasing NL. We
note that D is significantly over-predicted for NL < 1280. Above
this NL, D is nearly constant; as NL is increased from 5120 to
20,480, D changes by only 0.4%.

The effects of varying timestep size ðDtÞ and computation box
size ðHxÞ are shown in Fig. 6b for Ca ¼ 0:2. D increases with decreas-
ing Dt and increasing Hx, but reaches asymptotic values for
Dt 6 10�3 and Hx=a > 3. As Dt is decreased from 0.01 to 0.001, D in-
creases by 4.2%, but as Dt is decreased from 0.001 to 0.0001, D in-
creases by only 0.8%. As Hx=a is increased from 0:5p to p;D
increases by 5.1%, but as Hx=a is increased from p to 2p;D increases
by only 1%. Results presented in Figs. 4–10, and in Tables 1–3 are for
Hx=a ¼ p.

Fig. 6 shows that at the best resolution ðNE ¼ 1603Þ, our predic-
tion for D ð¼ 0:5Þ is the closest to, but still 4% less than, that ob-
tained by Lac et al. (=0.52). This prediction is, however, better
than that obtained by Li and Sarkar (=0.49).

In Table 2, we present the values of the inclination angle h that
the major axis of the capsule makes with the X-axis after it has
reached a steady-state. The orientation angles obtained from our
simulations also agree very well with those of RP and L1.

In Table 3, we present the period of the tank-treading motion
(TTP) of the capsule, and compared that with the results of RP
0

0.1

0.2

0.3

0.4

0.5

X

Y

Z

t*=0 t*=0.16

t*=1

0

0.1

0.2

0.3

0.4

0.5

X

Y

Z

t*=0
t*=0.16

t*=16

Fig. 12. Same as in Fig. 11, but over an extended peri
and L1. TTP is computed in two different ways: by following a full
revolution of a marker point, and by integrating dl=jvj where dl is a
line segment over the capsule profile in (x, y)-plane, and v is mar-
ker point velocity. As shown in Table 3, the former approach gives
higher values of TTP. For Ca 6 0:15, TTP computed using the second
approach agrees well with those of L1 with maximum difference of
3% at Ca ¼ 0:025. For Ca ¼ 0:2, Lac et al. used the first approach,
and their result agrees within 0.45% of ours.

At low Ca, neo-Hookean membrane tends to exhibit buckling
(L1; Li and Sarkar). As shown by these authors, buckling onsets
due to membrane zones undergoing compression in the equatorial
region. In Fig. 7 we show the distribution of the elastic tension in
the membrane for Ca ¼ 0:025. Compressive (negative) stress in
the equatorial region of the capsule is evident in the figure.

In Fig. 8, we show the effect of the viscosity ratio k ¼ lc=l0 on
the steady state values of D, and compare our results with those
of RP. This figure again shows that for k 6¼ 1, as well, our results
are in good agreement with those of RP.

The trajectory of a marker point on the capsule surface is shown
in Fig. 9 and compared with the results of Lac et al. (2004). This re-
sult also shows excellent agreement between the two simulations.

3.2. Resolution test

Sensitivity of our results to the Eulerian and Lagrangian resolu-
tions was shown earlier in Fig. 6 for Ca ¼ 0:2. Further results for
Ca ¼ 0:1 are shown in Fig. 10 by considering three test simulations
at different resolutions: (i) 803 Eulerian grids and 1280 Lagrangian
6
t*=32

t*=64

t*=32

t*=64

od of time. Ca ¼ 0:2 (top), and Ca ¼ 0:8 (bottom).
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elements; (ii) 1203 Eulerian grids and 1280 Lagrangian elements;
(iii) 1203 Eulerian grids and 5120 Lagrangian elements. In Fig. 10b,
we show the time history of D, and in Fig. 10b, we show the final
steady shape in the shear plane. No significant difference is ob-
served between the three test cases.
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Fig. 13. History of (a) lateral distance, (b) lateral velocity, (c) slip velocity, (d) deformatio
—— Ca ¼ 0:2; –�–�– Ca ¼ 0:4, and ––– Ca ¼ 0:8. Here a=H=0.16, and k ¼ 1.
We also keep track of the capsule volume during the simula-
tions. The change in the cell volume is less than ±0.1% from its ini-
tial volume. The projection method used here for the flow solver
satisfies the mass conservation up to 	 10�14 at every grid point
in the computational domain.
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n, and (e) orientation (w.r.t. X-axis) of a capsule as a function of Ca. � � �� � � Ca ¼ 0:1;
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4. Results and discussion

4.1. Migration at k ¼ 1

We now consider the motion of a capsule in a fully-developed
Poiseuille flow in a channel. As mentioned before, the imposed
periodicity of the computational domain along the X and Z direc-
tions implies that we consider the motion of an array of capsules
(Fig. 1), rather than a perfectly ‘isolated’ capsule. The inter-capsule
distance is taken to be Lx0 ¼ Lz0 ¼ H. The effect of inter-capsule
spacing will be considered in a later section.

We now consider the motion of a capsule in a fully-developed
Poiseuille flow in a channel. As mentioned before, the imposed
periodicity of the computational domain along the X and Z direc-
tions implies that we consider the motion of an array of capsules
(Fig. 1), rather than a perfectly ‘isolated’ capsule. The inter-capsule
distance is taken to be Lx0 ¼ Lz0 ¼ H. The effect of inter-capsule
spacing will be considered in a later section.

The initial transience immediately after the capsule is released
in the flow is shown in Fig. 11 for Ca ¼ 0:2 and 0:8. For this case,
we consider a=H ¼ 0:16. We use 1280 and 5120 Lagrangian ele-
ments for Ca ¼ 0:2 and 0:8, respectively. The capsule is released
close to the wall at Yc=H ¼ 0:175 at t� ¼ 0. It deforms very quickly
(within t� < 1, as shown) under the action of the imposed shear,
and aligns itself at an angle with the direction of the flow. For
0. 2 0. 25 0. 3
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0.03

a

Fig. 14. Comparison of a free capsule with quasi-steady results for Ca ¼ 0:2; k ¼ 1, and
steady results. Capsules shapes at two different locations are shown in the bottom. Soli
Ca ¼ 0:2, the capsule attains an ellipsoidal shape, but for
Ca ¼ 0:8, the capsule shape at t� > 1 is asymmetrical with high-
curvature corner in the near-wall side. As expected, deformation
and alignment w.r.t. the X-axis are higher for Ca ¼ 0:8.

Migration of the capsule over an extended time ðtUcl=a > 400Þ
until the capsule comes close to the center of the channel is shown
in Fig. 12. For both Ca, the capsules migrate continually towards
the centerline. Deformation decreases as the capsule moves closer
towards the center in the low shear region. For Ca ¼ 0:8, the shape
is asymmetric when the capsule is located near the bottom wall,
and near the channel center. Figs. 11 and 12 suggest that the rate
of deformation is significant during the initial transience. Once this
initial transience is passed, capsule shape remains nearly steady as
it migrates away from the wall.

In Fig. 13 we show the history of lateral location, migration
velocity Vy, slip velocity V slip, deformation, and angular orientation
w.r.t. X-axis for Ca ¼ 0:1, 0.2, 0.4, and 0.8. For all cases, a=H ¼ 0:16
and capsules are released at Yc=H ¼ 0:175. At high Ca, capsule
shape is not ellipsoidal. In this case, D is calculated as ðLmax � L?Þ
=ðLmax þ L?Þ where Lmax is the maximum distance between two
points on the capsule profile on (x, y)-plane, and L? is the distance
between capsule membrane in the direction normal to Lmax in the
same plane. For an ellipsoidal capsule, Lmax is the major axis, and L?
is the minor axis. The orientation angle h reported for non-ellipsoi-
dal shape is the angle between Lmax and x-axis. As the flow starts, D
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0.25b

a=H ¼ 0:16. In (a) and (b) lines are for the free capsule, and dots are for the quasi-
d line is the free capsule, and dash line is the quasi-steady result.
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attains its peak value within a short time ðt� < 1Þ implying that the
capsule deforms quickly before it moves significantly in the lateral
direction. The migration velocity and slip velocity also reach their
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Fig. 15. Same as in Fig. 1
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Fig. 16. Dependence of migration velocity, slip velocity, deformation, and orientatio
maximum, and the orientation angle reaches its minimum, during
the rapid initial transience. The migration velocity and deforma-
tion are observed to be higher with increasing Ca implying that
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n on Ca while keeping a=H and Yc=H constants at 0.16, and 0.18, respectively.
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the lateral migration is essentially due to the departure from the
initially undeformed spherical shape as in case of a liquid drop.
The angular orientation w.r.t. the X-axis decreases with increasing
Ca, which is also consistent with the results in linear shear flow,
and seem to remain the same even in presence of the wall-
bounded parabolic flow. The slip velocity V slip, defined as the
Poiseuille velocity at the instantaneous center of the capsule minus
the X-component of the capsule velocity, is shown in Fig. 11c. The
slip velocity is always positive meaning that the capsule lags be-
hind the fluid. The slip velocity becomes higher with decreasing
Ca. The slip velocity is order of magnitude less than the capsule
translational velocity. In the limit Ca!1, the slip velocity would
vanish, whereas in the limit that the capsule is perfectly rigid, it
would be maximum for a given lateral location. This qualitative
trend is reflected in the simulation results. Once the initial tran-
sience is passed, the capsules start migrating toward the channel
center. During subsequent motion, the deformation, migration
and slip velocity decrease, and the orientation increases with time
as the capsule drifts toward low shear region. The decrease in slip
velocity over time (i.e. with lateral location) is also in qualitative
agreement with the asymptotic theory of small rigid spheres as
well as neutrally buoyant drops at small deformation. The capsule
migrates toward the center of the channel for all values of Ca con-
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Fig. 17. (a) Variation of Vy , (b) V slip, and (c) D w.r
sidered here. The migration in general is slow. For Ca ¼ 0:8 the cap-
sule travels only about half of its diameter in the lateral direction,
while translating nearly 50 diameters along the axial direction.

Fig. 13 shows oscillations in Vy;V slip;D, and h for Ca ¼ 0:8. The
oscillations arise from the shape oscillation of the capsule which
can be seen from capsule profiles given in Fig. 11. This figure shows
that immediately after the release ðt� ¼ 0:16 and 0:64Þ, capsule
shape is ellipsoidal. But for t� P 0:96, sharp edge is developed near
the wall-ward side due to the higher local shear stress acting on this
region of the capsule arising from the no-slip condition imposed on
the wall. Because of the tank-treading, the sharp curvature travels
along the membrane, and it dissipates as it moves away from the
wall ðt� ¼ 2:4Þ. Subsequently, another sharp curvature develops
near the wallward region ðt� ¼ 3:3 and 4:1Þ, which also travels
along the membrane away from the wall. As the capsule migrates
away from the wall, the sharp curvature weakens. Due to repeated
emergence and smoothening of the sharp curvature, magnitude and
direction of Lmax and L? oscillate, causing an oscillation in D and h.
Oscillations in Vy and V slip also arise due to shape oscillation. Vy is
locally minimum when the curvature is high, and maximum when
it is smoothened. The oscillations are not evident beyond t� ¼ 5
over which the capsule travels only 0.28 of its diameter. Thus, these
oscillations are during initial transience. Since migration is a slow
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.t. Yc while keeping Ca and a=H ¼ 0:16 fixed.
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Fig. 19. (a) Comparison of the scaled shape function Cs (solid line), and the num-
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process, and as shown in Fig. 12, the capsule does not reach the cen-
ter even at t� ¼ 64, these oscillations do not have any effect on the
long-term migration.

It is of interest to see if the motion of the capsule, after the ini-
tial transience is passed, is quasi-steady. We compare the motion
of a ‘free’ capsule with the results of a ‘quasi-steady’ simulation
in Figs. 14 and 15 for Ca ¼ 0:2 and 0:8, respectively. For the simu-
lation of a free capsule, the capsule is released near the bottom
wall and the simulation is continued until it reaches close to the
center. For the quasi-steady simulations, an undeformed spherical
capsule is released at various lateral locations along the trajectory
of the free capsule, and the simulations are stopped just after the
initial transience is passed. Since the capsule has not moved signif-
icantly in the lateral direction during this short simulation, the re-
sults, such as migration velocity, deformation, etc., can be taken as
the ‘quasi-steady’ results corresponding to that lateral location. In
Figs. 14 and 15, we compare four quantities: migration velocity,
slip velocity, deformation, and angular orientation, of the free cap-
sule and quasi-steady result. In the figure the lines represent the
free capsule, and the points represent quasi-steady results. As
can be seen for both Ca ¼ 0:2 and 0:8, all four quantities show
excellent agreement between the free capsule and the quasi-stea-
dy results. Note that in the limit the capsule is located at the center
of the channel, the slip velocity is still non-zero and proportional
to ða=HÞ2 according to the linear theory. The asymptotic behavior
of computed V slip in Fig. 13a yields the same order of magnitude
value as ða=HÞ2.

In Figs. 14 and 15, we also overlap the shapes of the freely
moving capsule and the quasi-steady results for various lateral
locations. The capsule shapes match very well which further con-
firms that the migration is a quasi-steady process.

The quasi-steady nature of the capsule migration can be under-
stood by comparing the migration time Ty ¼ a=Vy, to the response
time of the capsule shape Tc ¼ la=Eh. The capillary number
Ca ¼ lUcl=Eh can be expressed as the ratio of Tc and the axial
convection time Tx ¼ a=Vx, where Vx 	 Ucl. Since Vy 
 Vx (that is,
Tx=Ty 
 1Þ, and Ca < 1, we see that Tc 
 Ty.

It is also of interest to compare the present results with previous
analytical predictions. Migration of a capsule with Hookean mem-
brane was considered by Helmy and Barthes-Biesel (1982) in an un-
bounded cylindrical Poiseuille flow in the limit of Caða=D0Þ 
 1,
where D0 is a length scale of the undisturbed flow, which is the tube
diameter for the Poiseuille flow. They predicted
Vy

Ucl
¼ �29

6
Ca

b
a

� �
a

D0

� �3

ð23Þ

for Poisson ratio equal to 1/2 for the membrane. Here b is the dis-
tance of the capsule center from the flow centerline.

Chan and Leal (1979) considered migration of a deformable li-
quid drop of surface tension r in an unbounded plane Poiseuille
flow in the limit of small deformation, and obtained

Vy

Ucl
¼ �8

5
l0Ucl

r
1� 2

Yc

H

� �� �
a
H

� �3
ð24Þ

for k ¼ 1. Despite the differences in the background flow, and the
nature of the particle, (23) and (24) predict the similar qualitative
dependence of Vy=Ucl on Ca;Yc=H and a=H, and differ only in the
numerical prefactors. Though exact comparison is not possible
due to the differences in the background flow and the nature of
the particle, it is of interest to see if the qualitative dependence of
Vy=Ucl w.r.t. Ca;Yc=H and a=H predicted by (23) and (24) agree with
our simulation.

In Fig. 16a we show the migration velocity as a function of Ca
while keeping a=H and Yc=H constants at 0.16 and 0.18, respec-
tively. The capsules were released at Yc=H ¼ 0:175, and hence the
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wall effect is strong. While (23) and (24) predict a linear depen-
dence of Vy on Ca, the simulations predict a non-linear dependence.
The results in Fig. 16 are shown for 0:025 6 Ca 6 0:8. Assuming that
the linear dependence of Vy on Ca is valid at low Ca (which is likely
to be the case), and extrapolating the result to higher Ca (dash line
in Fig. 16a), we see that the linear theory over-predicts the migra-
tion velocity at higher Ca. This is because the linear theory over-pre-
dicts also the capsule deformation at higher Ca (Table 1).

We also show slip velocity, deformation, and orientation as
functions of Ca in Fig. 16. Fig. 16a shows that the slip velocity de-
creases with increasing Ca. For a small, rigid sphere in a circular
Poiseuille flow, the ratio V slip=Ucl ¼ b2

=ðD0=2Þ2 � ð2=3Þða=D0Þ2, to
the leading order (Brenner, 1970; Goldman et al., 1967) where b
and D0 are defined above. In the linear theory of Helmy and
Barthes-Biesel (1982), the axial velocity of the capsule does not
depend on Ca, and the ratio V slip=Ucl is the same as that of a small
rigid sphere. Our simulations show that V slip=Ucl depends on Ca.
Further, the order of magnitude of V slip=Ucl obtained from the
simulation and shown in Fig. 16a is significantly lower than the
prediction by the linear theory even when Ca ¼ 0:025 is consid-
ered. On the contrary, the simulation and the linear theory would
predict nearly similar order of V slip as b! 0, that is when the cap-
sule is located far from the wall as observed in Fig. 15a. Shapira and
Haber (1990), on the contrary, obtained that V slip=Ucl is propor-
tional to Caða=YcÞ2, for a wall-bounded linear shear flow in the lim-
it of small deformation. Assuming that the linear dependence of
V slip on Ca is valid at low Ca even for parabolic flow, and extrapo-
lating the result to higher Ca, one can say from Fig. 16a that the lin-
0
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0.36 0.39
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0.01

0.015
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Fig. 20. Migration of a capsule at a=H ¼ 0:5, and Ca ¼ 0:2. Top: deformed shapes for free c
for free capsule (solid line) and quasi-steady results (filled circles). Also shown is the effec
circles and boxes correspond to Lx0=a ¼ 2;6 and 8, respectively.
ear theory, when taken into consideration the effect of Ca, would
underpredict the slip velocity at higher Ca.

In Fig. 16b, deformation D and orientation angles are shown. D
appears to approach a plateau as Ca increases which explains the
plateau in migration velocity. This plateau in D can arise from
two effects. In an unbounded linear shear flow, D does not increase
linearly at large Ca, and shows reduced rate of change at higher Ca.
In addition, the presence of the wall and parabolic nature of the
flow can further prevent the capsule from deforming at higher
Ca. In an wall-bounded flow, migration arises from two effects. A
particle moving near a wall would experience a lift force even in
absence of the flow due to the asymmetry introduced by the wall.
In addition the presence of a shear flow would introduce additional
asymmetry in the governing equations at low inertia leading to the
deformation-induced lift force. Thus the migration velocity is pro-
portional to the product of slip velocity and amount of deforma-
tion. This explains, as seen in Fig. 16, that D increases but V slip

decreases with increasing Ca resulting a plateau in Vy at higher Ca.
In Fig. 16b, the orientation angle at very low Ca is close to its

theoretical value of p=4 for low deformation. It decreases with
increasing Ca departing from the linear theory, but appears to pla-
teau at higher Ca due in part, possibly, to the wall effect.

In Fig. 17 we plot Vy;V slip, and D as functions of Yc=H while
keeping Ca and a=H fixed. Unlike the linear dependence in (23)
and (24), the simulations predict non-linear dependence of Vy

w.r.t. Yc=H.
In Fig. 17b, variation of V slip w.r.t Yc=H shows also a non-linear

decrease. The slip velocity is higher near the wall and decreases
X

Y

Z

0.42 0.45

apsule (solid line), and quasi-steady simulations (dash line). Bottom: lateral velocity
t of increasing separation distance between consecutive capsules: filled circles, open
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away from the wall. The higher slip velocity near the wall arises
from the no-slip condition imposed on the wall which causes a
higher local shear rate in the gap between the capsule and the wall.
When wall-effect is included (Chan and Leal, 1979; Chaffey et al.,
1967; Magnaudet, 2003), V slip should decrease as ð1� Yc=ðH=2ÞÞ2,
in the leading order for small rigid spheres as well as neutrally
buoyant drops under small deformation. Our numerical results
indicate that V slip decreases faster than this rate near the wall,
and slower near the centerline. D shown in Fig. 17c also suggests
a faster decrease near the wall than that near the centerline.

In Fig. 18 we plot Vy as a function of ða=HÞ3 while keeping Ca
and Yc=H constants. Interestingly, the linear dependence of Vy

w.r.t. ða=HÞ3 as predicted by (23) and (24) happens to be the case
in the numerical results as well.

Shapira and Haber (1988) studied the wall effect on the shape of
a drop moving in a quiescent fluid confined between two parallel
plates in the limit a=H 
 1, and predicted

D ¼ 175
384

lVx

r
a
H

� �2
Cs ð25Þ

where Cs is a function of Yc=H which is maximum at the channel
wall, and zero at the center, implying that drop deformation de-
creases as it is located closer to the center, and that deformation
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Fig. 21. Velocity vectors drawn in the XY plane passing through, and in a frame of refer
Yc=H ¼ 0:35, 0.44, and 0.46, respectively. (d) for a=H ¼ 0:16.
is zero at the center as is the case for small a=H. Though Shapira
and Haber (1988) considered a non-migrating drop with a constant
orientation at p=4, we find that the expression of Cs can be used to
predict the dependence of Vy on Yc. This is shown in Fig. 19a where
data points are numerical Vy at various Yc locations, and solid lines
are the shape function Cs scaled by a factor for each Ca.

The results shown in Fig. 19a are for a fixed a=H ¼ 0:16, the low-
est size ratio considered. Since the numerical results agree with the
theoretical prediction (23) and (24) on the linear dependence of Vy

on a=H, the scaling factor used for Cs should depend only on Ca.
Based on the numerical results in Figs. 18 and 19a, and following
the theoretical results of Shapira and Haber (1988), an approxi-
mate expression for the migration velocity can be proposed as

Vy

Ucl
¼ F1ðCaÞF2ðYc=HÞ a

H

� �3
; ð26Þ

where the functions F1 and F2 are functions of Ca and Yc=H, respec-
tively, and are given as

F1 ¼ exp½�0:3458 lnðCaÞ þ 7:3878� ð27Þ

and

F2 ¼ exp �11:1758
Yc

H

� �
� 2:7429

� �
: ð28Þ
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ence moving with, the capsule center of mass. (a)–(c) are for a=H ¼ 0:5;Ca ¼ 0:2 at
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F2 is a simplified form of the original shape function Cs given by
Shapira and Haber. In Fig. 19b, we replot the migration velocity
shown in Fig. 18 (which was for a constant Ca ¼ 0:2 but different
Yc=H) by scaling Vy=Ucl by ðF1F2Þ. We find that curves for different
Yc=H collapse, and vary linearly with ða=HÞ3. Eqs. (26)–(28) can thus
be used to reasonably predict migration rate of a capsule in a para-
bolic flow in a channel for moderate values of ða=HÞ and Ca.

4.2. Larger capsules

We consider a=H ¼ 0:5 for which we use 5120 Lagrangian ele-
ments on the capsule surface. The computational domain is cubic,
and the distance between the adjacent capsule centers in the array
is Lx0 ¼ Lz0 ¼ H. The capsule is released at Yc=H ¼ 0:334. Fig. 20
shows the deformed shapes at various lateral locations for
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Fig. 22. Effect of separation distance on flow pattern: velocity vectors (in a frame of refe
case shown in Fig. 21a–c but for Lx0=a ¼ 8.

1.4
1
0.6
0.4
0

-0.4
-0.6
-1
-1.4
-1.8
-2.2

Fig. 23. Membrane stress distribution for the migrating capsule sh
Ca ¼ 0:2. Unlike the smaller capsules which attain ellipsoidal
shape after the initial transience is passed, the initial shape (at
Yc=H ¼ 0:34 in Fig. 20) for a=H ¼ 0:5 resembles a tear-drop and
is asymmetric with the high-curvature end facing the bottom wall.
Center-ward migration is evident in the figure. As the capsule ap-
proaches the center, it changes from a tear-drop to a slipper shape.
In the figure, we also overlap the quasi-steady shapes with those of
the free capsules, and see that even for the larger capsule, the two
simulations predict similar shapes. The migration velocity for the
free capsule and the quasi-steady values are presented in Fig. 20
which also shows that the quasi-steady values match well with
the results of the free capsules once the initial transience is passed.

Fig. 21 shows the fluid velocity vectors at three time instances
during the migration of the larger capsule. The figures here are
drawn in a reference frame moving with the velocity of the center
x
2 3 42 2.5 3 3.5 4

2 3 4

2 3 4

rence moving with the velocity of the capsule center of mass) corresponding to the

own in Fig. 20. Dark regions correspond to compressive stress.
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of mass of the capsule. Also shown is the vector plot for a=H ¼ 0:16
at one time instance. During the initial phase of migration of the
larger capsule, a clockwise rotating vortex is generated inside the
capsule. The center of this vortex is located close to the capsule
centroid. Due to the proximity of the larger capsules in the array,
ða=Lx0 ¼ 0:5Þ, the fluid in between the adjacent capsules also devel-
ops a counter rotating vortex (marked by dash arrow in the figure).
In case of smaller capsules, such vortex exterior of the capsule is
absent. As the larger capsule approaches the center of the channel,
the interior vortex moves upward, while a new smaller counter
rotating vortex is generated near the bottom. In the exterior fluid
as well, two counter rotating vortices can be seen, which are not
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0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3a

Fig. 24. Free capsule versus quasi-steady results for k 6¼ 1. Lines represent free capsule an
k ¼ 5, dash lines and open circles represent k ¼ 0:2. a=H ¼ 0:16;Ca ¼ 0:2.
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Fig. 25. Deformed shapes for a=H ¼ 0:5;Ca ¼ 0:2 at k ¼ 0:2 (top) and k ¼ 5 (botto
present for the smaller capsule. The presence of exterior vortices
for large a=H, and the transition from one vortex to two counter-
rotating vortices as shown by our extended simulations, can have
implications in case of tracer diffusion in capillary blood vessels
in presence of erythrocytes. It should be mentioned that the
strength of the internal vortex is actually very weak.

For larger capsules of a=H ¼ 0:5, the effect of separation dis-
tance between consecutive capsules is shown in Fig. 20. We con-
sider Lx0=a ¼ 2;6 and 8. The separation distance does have a
significant effect on migration velocity when the capsule is located
closer to the wall. As Lx0=a is changed from 2 to 6, Vy increases by a
factor of 1.5; when Lx0=a is changed from 6 to 8, Vy increases by a
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m). Solid line is the free capsule, and dotted line is the quasi-steady result.
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Fig. 26. Migration velocity, deformation, and orientation as functions of Yc. a=H ¼ 0:16;Ca ¼ 0:2. h k ¼ 1, M k ¼ 0:2, $ k ¼ 5.
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factor of 1.05. Thus Vy is expected to converge with increasing
Lx0=a. For this case, we have not performed a simulation with even
higher Lx0=a due to computational cost, as Lx0=a ¼ 8 itself was sim-
ulated using 320� 80� 80 resolution. The effect of Lx0 appears to
decrease as the capsule moves away from the wall. Further result
on the effect of Lx0=a on Vy for a=H ¼ 0:16 is given later in Fig. 27
where convergence of Vy with increasing Lx0=a is evident. The flow
pattern for Lx0=a ¼ 8 is shown in Fig. 22 which can be compared
with the results for Lx0=a ¼ 2 shown in Fig. 21. Evolution of the
internal and external vortices as the capsule migrates away from
the wall is qualitatively similar for Lx0=a ¼ 8 and 2.

For larger capsules shown in Fig. 20, the back of the membrane
undergoes compression. This is shown in Fig. 23 where we plot the
principal stress. Regions having negative stress are seen in this
figure.

4.3. Effect of k

Effect of k is considered next by two simulations at k ¼ 5 and 0:2
(both for a=H ¼ 0:16) shown in Fig. 24. Deformation, orientation,
migration and slip velocity of a free capsule released at Yc=H ¼
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0:175 at t� ¼ 0 are shown. Also shown are the results from quasi-
steady simulations of undeformed spherical capsules released at
various lateral locations. The results from the free-capsule simula-
tion and those of quasi-steady simulations agree well implying that
the quasi-steady nature of migration is valid over the range of vis-
cosity ratio considered here.

The capsule shapes for free capsule and for quasi-steady results
are compared in Fig. 25 for a=H ¼ 0:5, and k ¼ 5 and 0:2 at various
lateral locations. The two simulations predict nearly overlapping
shapes implying the quasi-steady nature of migration even for lar-
ger capsules at a viscosity ratio other than unity.

The migration velocity, deformation and orientation of the cap-
sules for k ¼ 5; 0:2 and 1 over a wider range of lateral locations are
shown in Fig. 26 for a=H ¼ 0:16;Ca ¼ 0:2. As expected, the migra-
tion rate, deformation and orientation angle decrease with increas-
ing k. The migration velocity and deformation decrease as the
capsule approach channel center. We also note that results for
k ¼ 1 and 0:2 nearly overlap with each other, which is consistent
with the linear shear results presented earlier in Fig. 8 which
showed that deformation did not change much from that of
k ¼ 1 when k is reduced below unity, but it changed significantly
when k > 1. Also note in Fig. 26 that near the center of the channel,
the deformation curves for k ¼ 1 and k ¼ 5 cross each other. This is
likely because a capsule with higher k is slower to respond to the
changing shear rate than the one with lower k. The characteristic
time for deformation is proportional to 1þ k. This also explains
why migration velocities are nearly the same for k ¼ 1 and k < 1,
but much lower for k > 1.

It may be noted that the expression of drop migration by Chan
and Leal suggests that for k < 0:5 and k > 10, the drop migrates to-
ward the center of a channel, while for 0:5 < k < 10, it migrates to-
ward the wall. The simulations performed here over a range of Ca
and k suggested that the capsule migrates always toward the cen-
ter of the channel.

4.4. Effect of capsule separation

The effect of separation distance on the migration velocity and
flow pattern for a=H ¼ 0:5 was shown earlier in Figs. 20 and 22. Fur-
ther results for a=H ¼ 0:16 at Ca ¼ 0:2 and 0:4, and a=H ¼ 0:5 at
Ca ¼ 0:2 are shown in Fig. 27. Here the dimensionless separation dis-
tance Lx0=a is varied from 1.25 to 25. As discussed earlier, migration
velocity changes significantly for small separation distance, but con-
verges beyond Lx0=a 	 6. The migration velocity decreases as �1=r
where r is the separation distance. Comparison of Vy at four Lx0=H
suggests that the results presented in the previous sections would
change very little by increasing the separation distance, but they
would change significantly with decreasing separation distance.
5. Conclusion

We present three-dimensional numerical simulations using
front-tracking method on the motion of an array of liquid capsules
enclosed by neo-Hookean membrane in a wall-bounded plane
Poiseuille. In the context of physiological flows, the range of cap-
sule size considered here is relevant for the motion of red blood
cells through arterioles and venules. Extensive validation of the
methodology is presented on capsule deformation in linear shear
flow. The results, such as history and steady-state values of defor-
mation parameter, orientation, tank-treading frequency, and tra-
jectory of material points on the capsule surface, showed very
good agreement in comparison to the boundary integral simulation
of Lac et al. (2004), and Ramanujan and Pozrikidis (1998).

We then present results on the lateral migration of a capsule in
a plane Poiseuille flow simulated over extended period of time. The
migration is observed to be a quasi-steady process, except an ini-
tial transient phase during which the capsule deforms very quickly,
over a wide range of Ca, size ratio ða=HÞ, and viscosity ratio ðkÞ.

Dependence of the migration velocity with respect to Ca, size ra-
tio and capsule location is studied and compared with the small-
deformation theory for liquid drops, and capsules with Hookean
membrane. Unlike the linear theory, migration velocity shows a
non-linear dependence on Ca and capsule location. The linear the-
ory is seen to overpredict the migration velocity, and underpredict
the slip velocity at higher Ca. This departure could be due to both
large deformation and small wall distance. Interestingly, however,
the linear dependence on ða=HÞ3 as predicted by the theory appears
to be valid even in the limit of large deformation, as shown by the
simulation results. Using the present numerical results, and the
analytical results of Shapira and Haber (1988), we then present a
correlation that can reasonably predict migration velocity of a cap-
sule for moderate values of a=H and Ca. Unlike the prediction for li-
quid drops (Chan and Leal, 1979), capsules are observed to migrate
toward the center for 0:2 6 k 6 5 range considered here.

Results presented here depict the effect of curvature in the
velocity profile, as well as the wall effects. For the undisturbed
Poiseuille flow considered here, it is difficult to isolate the wall
effect and the curved velocity profile due to the way the compu-
tational problem is set up. In order to isolate the wall effect
using the present computational setup, one can consider a linear
shear flow where the capsule can be placed away from the wall
without any change in the shear rate. Identifying such wall ef-
fects in the case of large deformation of a capsule is left for fu-
ture investigation.

While experimental data on lateral migration of single liquid
drop are available in the literature (e.g. Smart and Leighton, 1991),
we are not aware of similar data on capsule migration. Indeed there
are experimental results available on capsule deformation in linear
shear flow, and on single-file motion (see Section 1). Results on lat-
eral migration of erythrocytes in tube or channel flow are not abun-
dant. Experiments by Goldsmith and co-workers (e.g. Goldsmith,
1971) was mentioned earlier. Recently, Secomb et al. (2007) pre-
sented two-dimensional simulation on erythrocyte migration in 8-
lm capillary. The simulation result was verified qualitatively by
experimental data on cell trajectories observed in microvessels of
the rat mesentery. The results presented in this article are, however,
for three-dimensional capsules in a planar flow, and hence cannot be
directly compared with their numerical or experimental data. It ap-
pears that migration experiments using spherical capsules are
necessary.
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